Chapter 4

Motion in Two Dimensions
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Kinematics in Two Dimensions Professor Wa’el Salah

Will study the vector nature of position, velocity and acceleration in greater detail.

Will treat projectile motion and uniform circular motion as special cases.
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Position and Displacement
The displacement of the

The position of an object is described ) particle is the vector Ar.

by its position vector, r.
The displacement of the object is
defined as the change in its position. \ @
- W
Ar=r —f, PNy
/
— ~ \
N, Path of
particle
X
O
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General Motion Ideas Professor Wa’el Salah

In two- or three-dimensional kinematics, everything is the same as in one-
dimensional motion except that we must now use full vector notation.

= Positive and negative signs are no longer sufficient to determine the
direction.
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Average Velocity

The average velocity is the ratio of the displacement to the time interval for the
displacement.
. Ar
'

The direction of the average velocity is the direction of the displacement vector.

The average velocity between points is independent of the path taken.

= This is because it is dependent on the displacement, which is also
independent of the path.
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Instantaneous Velocity

As the end point approaches @&), At
approaches zero and the direction

The instantaneous velocity is the limit ot At apmraachies thar oEthegrees
of the average VeIOCIty as At ‘line tangent to the curve at ().
approaches zero.
Vot Ar _dr
M A~ e

At—0

Direction of ¥ at @

= As the time interval becomes
smaller, the direction of the

displacement approaches that of \:\\‘,

the line tangent to the curve. /®" | As the end point of the path is
S ®'—4 moved from B) to B to @)’ the
4 respective displacements and
) corresponding time intervals
# become smaller and smaller.
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Instantaneous Velocity, cont

The direction of the instantaneous velocity vector at any point in a particle’s path
is along a line tangent to the path at that point and in the direction of motion.
The magnitude of the instantaneous velocity vector is the speed.

= The speed is a scalar quantity.
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Average Acceleration

The average acceleration of a particle as it moves is defined as the change in
the instantaneous velocity vector divided by the time interval during which that
change occurs.

—

5 = AV V.-V,
VOUAt ot -t
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Average Acceleration, cont

As a particle moves, the direction of the y =

. e AV, Vy
change in velocity is found by vector
subtraction.
— — - or ?
AV =V, —V. :
—>
The average acceleration is a vector ;;f Av
quantity directed along Av.
X
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Instantaneous Acceleration

The instantaneous acceleration is the limiting value of the ratio AV/ At as At
approaches zero.

. AV dv
A=lm A = g

At—0

* The instantaneous equals the derivative of the velocity vector with respect to
time.
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Producing An Acceleration

Various changes in a particle’s motion may produce an acceleration.
= The magnitude of the velocity vector may change.
= The direction of the velocity vector may change.
= Even if the magnitude remains constant

= Both may change simultaneously
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Kinematic Equations for Two-Dimensional Motion

When the two-dimensional motion has a constant acceleration, a series of
equations can be developed that describe the motion.

These equations will be similar to those of one-dimensional kinematics.

Motion in two dimensions can be modeled as two independent motions in
each of the two perpendicular directions associated with the x and y axes.

= Any influence in the y direction does not affect the motion in the x direction.

Professor Wa’el Salah
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Kinematic Equations, 2

Position vector for a particle moving in the xy plane.
F=Xi+Yj

The velocity vector can be found from the position vector.
_ dr s e
V=—2=V,1+V, ]

dt
= Since acceleration is constant, we can also find an expression for the

velocity as a function of time:

V. =V, +at
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Kinematic Equations, 3

The position vector can also be expressed as a function of time:
Ry 212
= L =r +tvt +%at
= This indicates that the position vector is the sum of three other vectors:
= The initial position vector

= The displacement resulting from the initial velocity
= The displacement resulting from the acceleration
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Kinematic Equations, Graphical Representation of Final
Velocity

b)
The velocity vector can be represented A A
by its components.
~ . _ ayt
V. is generally not along the direction of
' V 2 U
either v. or a v
L
A
'Uyz'
y Y X
< r ' o
Uys a,l
<€ >
Uxf
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Kinematic Equations, Graphical Representation of Final

Position
_').‘
The vector representation of the X
position vector T
- 1. .2
I: is generally not along the same 2 bt
. . - — pug ) ¢
direction as ', ,v. or a L
- - Y
V; and I are generally not in the same vyt |
direction A
i T,
Y ¢ X
«— X; —>a— Ul —>—> %(thz
-t xl‘ o
b
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Graphical Representation Summary Professor Wa’el Salah

Various starting positions and initial velocities can be chosen.

Note the relationships between changes made in either the position or velocity
and the resulting effect on the other.

Y b)
A A A T
a.l 1 2
Y i
] ] n:j.i
L\
Yyf 1

 J L 4
A vt »
) — *y
Uy v I

Y A4 x /

Vi r

« 0 = > ¢ i

Uy a,t y x
; el o 2
«—— X, —>— Ul —>= = iaxl
Uor - : -
xf - .X'f »
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Projectile Motion

An object may move in both the x and y directions simultaneously.

The form of two-dimensional motion we will deal with is called projectile motion.
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. . . . Professor Wa’el Salah
Assumptions of Projectile Motion

The free-fall acceleration is constant over the range of motion.
= |tis directed downward.
= This is the same as assuming a flat Earth over the range of the motion.

= |t is reasonable as long as the range is small compared to the radius of the
Earth.

The effect of air friction is negligible.
With these assumptions, an object in projectile motion will follow a parabolic path.

= This path is called the trajectory.
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Projectile Motion Diagram

The y component of
velocity is zero at the

The x component of |
Y peak of the path. ) .

l velocity remains

constant because

there is no

acceleration in the x
direction.
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At the top of the trajectory, the projectile has zero vertical

5 Vvelocity (v, = 0), but its vertical acceleration is still —g.

Uy - | ""'-.k II
Ul : s vl i y 3
2 m ___________ b bt P S y ' Vertically, the projectile

2V o i (] I |[ p,. is in constant-acceleration
’/ } 1x | v — ] 3]’ 7 5
7 | ! 3y U3 I motion in response to the
! | ' | ‘\ : | earth’s gravitational pull.
%y s : ‘ a,=—¢g : % I : Thus its vertical velocity
’ I '. 9 i changes by equal amounts
Yoy : l : \ Yoy [ 1 during equal time intervals.
: ) 1 \\ I
| | ! i
I ! y \
ag , ! ; \ :
= : I, ' F X ----- *‘
O| Vox ! : 1 l
i } i ! [
1 I I : :
| Vo Uik . U | Uz :
QO ————— —‘—b- ——————— -_,- ——————— O —————— E ]

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration

is zero, so it moves equal x-distances in equal time intervals.
© 2012 Pearson Education, Inc.
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Acceleration at the Highest Point

The vertical velocity is zero at the top.
The acceleration is not zero anywhere along the trajectory.

= |f the projectile experienced zero acceleration at the highest point, its velocity
at the point would not change.

= The projectile would move with a constant horizontal velocity from that point on.
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Analyzing Projectile Motion

Consider the motion as the superposition of the motions in the x- and y-
directions.
The actual position at any time is given by:

£ =F+Vt+ 1gt°

The initial velocity can be expressed in terms of its components.
" V,; = V;cos fand v, = v; sin ¢

The x-direction has constant velocity.
=a, =0

The y-direction is free fall.

| ay=_g
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Projectile Motion Vectors Professor Warel Salah

=T +V,

t+ 1,gt° y

The final position is the vector sum of
the initial position, the position resulting

from the initial velocity and the position s,
resulting from the acceleration. \\
\
\
\
X
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. . . . Professor Wa’el Salah
Range and Maximum Height of a Projectile

When analyzing projectile motion, two

characteristics are of special interes.t )
The range, R, is the horizontal distance
of the projectile. vy@= 0
The maximum height the projectile - @ A{
reaches is h. Vi o7 AN
7 \\
d »
# h A
X 0 b
: NG,
v — x
0
- R »‘
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Height of a Projectile, equation

The maximum height of the projectile can be found in terms of the initial velocity
vector:
_visin®g

h
29

This equation is valid only for symmetric motion.

, o
| L
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. . . Professor Wa’el Salah
Range of a Projectile, equation

The range of a projectile can be expressed in terms of the initial velocity vector:
_vZsin20
9

R

This is valid only for symmetric trajectory.
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A 45° launch angle gives the greatest range;
other angles fall shorter. ........

-.-

00"0. g,
@ ® *s,
.. . . . . . . . . *t‘
@
Launch ® : ° 8. o
® v
® - =
angle: 0 S
G.'O = 30 ®
GfO — 450
Gfo — 600 Professor Wa’el Salah
& 2012 Pearson Education, Inc.
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More About the Range of a Projectile

y (m)

150

100

50

Professor Wa’el Salah

i | |
Complementary
values of the 1nitial

A
\ RN
% / same value of R.
~
ke My |
N\ Y

angle 0 result in the

NG
S_— \\\\
- N\

\ = L
\ RN \\ ™~
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Range of a Projectile, final

The maximum range occurs at 8 = 45°.
Complementary angles will produce the same range.
= The maximum height will be different for the two angles.

= The times of the flight will be different for the two angles.
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Projectile Motion — Problem Solving Hints

Conceptualize

= Establish the mental representation of the projectile moving along its
trajectory.

Categorize
= Confirm air resistance is neglected.

= Select a coordinate system with x in the horizontal and y in the vertical
direction.

Analyze
= |f the initial velocity is given, resolve it into x and y components.

= Treat the horizontal and vertical motions independently.
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. . . . . Professor Wa’el Salah
Projectile Motion — Problem Solving Hints, cont.

Analysis, cont.

= Analyze the horizontal motion with the particle-under-constant-velocity
model.

= Analyze the vertical motion with the particle-under-constant-acceleration
model.

= Remember that both directions share the same time.

Finalize

= Check to see if your answers are consistent with the mental and pictorial
representations.

= Check to see if your results are realistic.
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Non-Symmetric Projectile Motion

v, —QOOm/s

— —
. — —

Follow the general rules for projectile
motion.

Break the y-direction into parts.
= up and down or

= symmetrical back to initial height
and then the rest of the height

Apply the problem solving process to
determine and solve the necessary 45, i
equations. o

May be non-symmetric in other ways
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. . . Professor Wa’el Salah
Uniform Circular Motion

Uniform circular motion occurs when an object moves in a circular path
with a constant speed.

The associated analysis model is a particle in uniform circular motion.
An acceleration exists since the direction of the motion is changing .

= This change in velocity is related to an acceleration.

The constant-magnitude velocity vector is always tangent to the path of the
object.
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Changing Velocity in Uniform Circular Motion Professor Wa'el Salah

The change in the velocity vector is due to the change in direction.
The direction of the change in velocity is toward the center of the circle.

The vector diagram shows V; =V, + AV

v,
®)4>\)"““‘ v/ ?z'
P Z&i? .~!!"h.’..h

ErTR -L(L ‘F:_f,'rl
b | *ﬁwﬁj

b
_— L ~'. CENGAGE
Section 4.4 1% Learning




(@

s This car accelerates by slowing
while rounding a curve. (Its
instantaneous velocity changes in
both magnitude and direction.)

@ 2012 Pearson Education, Inc.
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(b) (©)

l ;
To find the car’s average acceleration between
P, and P,, we first find the change in velocity
AD by subtracting U, from U,. (Notice that
v, + AU =1,

The average acceleration has the same direction
as the change in velocity, Av.
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(a) Acceleration: curved trajectory

To find the instantaneous T, ->
acceleration P, o
daatp, .. v,

& ... we take the limit of @,,
"-.. as P, approaches P, ...

HPl
/ [] J—

" Acceleration points to
concave side of path.

(b) Acceleration: straight-line trajectory
Only if the trajectory is -7

a straight line ... U,
Py

- - 2 AI_; Ai’-)

v 1 -~ —
a=1lim=—=
/ // A0 At
" P . L
1 ... 1s the acceleration in the
direction of the trajectory.

”~
-

@© 2012 Pearson Education, Inc.
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(b) Acceleration: straight-line trajectory

Only 1f the trajectory is _-7
a straight line ... v,
P,
-
/// Ar—0 AI
- Pi . . .
-~ .. 1s the acceleration in the

direction of the trajectory.
@ 2012 Pearson Education, Inc.
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Tangent to path at P

Component of
a parallel to
the path ™

..... Normal to

. . path at P
Component of a

perpendicular to the path

© 2012 Pearson Education, Inc.
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(a) When speed is constant along a curved
path ...

... acceleration is
normal to the path.

Normal at P
& 2012 Pearson Education, Inc.

(b) When speed is increasing along a curved
path ...

“ ... acceleration points
ahead of the normal.

FEN
a

/
Normal at P

Professor Wa’el Salah

(c) When speed is decreasing along a curved
path ...

... acceleration points
behind the normal.

Normal at P
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(a)

Direction
of motion

N\ D F
\\ E
N
BN\T
3 Normal at €
S Normal at D i Normal at F
' \
%
3 A\
ANy .
—TTTF
E

© 2012 Pearson Education, Inc.
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(b) \ Professor Wa’el Salah
~

N
\
~
~
N
\
N,
N
b
N
—_
B\.d
. Normal at E
N Normal at D i Normal at F
' \
\
—
a ) \\
ad
{ 3
7T F
-
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Centripetal Acceleration

The acceleration is always perpendicular to the path of the motion.
The acceleration always points toward the center of the circle of motion.

This acceleration is called the centripetal acceleration.
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Centripetal Acceleration, cont

The magnitude of the centripetal acceleration vector is given by

V2

aC:T

The direction of the centripetal acceleration vector is always changing, to
stay directed toward the center of the circle of motion.
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Period

The period, T, is the time required for one complete revolution.

The speed of the particle would be the circumference of the circle of motion
divided by the period.

Therefore, the period is defined as

_2rr

BRY,
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Tangential Acceleration
The magnitude of the velocity could also be changing.
In this case, there would be a tangential acceleration.

The motion would be under the influence of both tangential and centripetal
accelerations.

= Note the changing acceleration vectors

Path of
particle
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Total Acceleration

The tangential acceleration causes the change in the speed of the particle.

The radial acceleration comes from a change in the direction of the velocity
vector.
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Total Acceleration, equations

The tangential acceleration:

dv
~ldt
The radial acceleration:
V2
a =—a. = -
The total acceleration:
= Magnitude
a=,a’+a’
= Direction

= Same as velocity vector if v is increasing, opposite if v is decreasing
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Speed slowest, a,,y minimum, a,,, Zero

Speeding up; a,, In Slowing down;
. . = . —F
same direction as v Qan OpPpOSIte to U
=~
ax ' RN ;
\
!
I
/
7

Speed fastest, a,,q maximum, a,,, Zero

€ 2012 Pearson Education, Inc.
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Example

r=250m,a=15.0m/s?

(a) a = ﬂcﬂs3{].ﬂ"=[lﬁ.ﬂm}sl)(mﬂ{]‘:’): 13.0m/s’

6) a.=—
r
s00” =ra_=2.50 m(l3.l] m/f): 325 m’/s’
v=+/32.5 m/s=|5.70 m/s ﬂ—150m/32

ANS FIG. P4.32

) @ =a+a

S04, =,/a’ —a —J 15.0 m/s 130 m/s’ ) =|7.50 m/s’
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(@) Uniform circular motion

Acceleration has
constant magni-
tude but varying
direction.

Velocity and
acceleration
are always
perpendicular.

© 2012 Pearson Education, Inc.
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(b) Projectile motion

Velocity and acceleration are perpendicular
only at the peak of the trajectory.

U

v a

*Acceleration is
constant in magnitude
and direction.

Q)
<l
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