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Simultaneity 

Why we are interested in simultaneous events 

and in their relative nature ? 

It is all because recording the time of an event is 

done through another event occurring 

simultaneously. 

Example: A clock, at rest to an observer, is ticking 

12:00 O’clock noon when an explosion takes 

place. Are these event simultaneous? The answer 

is yes. The observer records the explosion at 

12:00 O’clock noon. However, if the observer and 

the clock are in a car moving with some speed, 

the events appear as not simultaneous. 
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Consequences of Relativity 

 
Time dilation, length contraction 
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Time Dilation: setup 

 The concept of time interval is also not absolute  

 To see this, imagine another boxcar experiment 

– Two observers, one in the car, another on the ground  
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Time Dilation 

 A mirror is fixed to the 
ceiling of a vehicle 

 The vehicle is moving to 
the right with speed v 

 An observer, O’, at rest in 
this system holds a laser a 
distance d below the mirror 

 The laser emits a pulse of 
light directed at the mirror 
(event 1) and the pulse 
arrives back after being 
reflected (event 2) 

Imagine an experiment: 
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Time Dilation, Moving Observer 

 Observer O’ carries a clock. 

 She uses it to measure the time between the 

events. 

– She observes the events to occur within a 

time Δtp. 

– Δtp = distance/speed =         . 








c

d2
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Time Dilation, Stationary Observer 

 Observer O is a stationary observer on the earth. 

 He observes the mirror and O’ to move with speed v. 

 By the time the light from the laser reaches the 

mirror, the mirror has moved to the right. 

 The light must travel farther with respect to O than 

with respect to O’. 
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Time Dilation, Observations 

 Both observers must measure the speed of the 

light to be c. 

 

 The light travels farther for O. 

 

 The time interval, Δt, for O is longer than the 

time interval for O’, Δtp 
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Time Dilation, Time Comparisons 
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 Observer O measures a longer time interval 

than observer O’. 



 A clock moving at speed v past a stationary 

observer, runs more slowly (by a factor of     ) 

than an identical clock at rest with respect to 

the observer. 

 The time interval Δt between two events 

measured by an observer moving with respect 

to a clock is longer than the time interval Δtp 

between the same two events measured by an 

observer at rest with respect to the clock. 

1 

γ 
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Time Dilation, Summary 
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Identifying Proper Time 

 The time interval Δtp is called the “proper 
time”. 

 

– The proper time is the time interval between 
events as measured by an observer who sees 
the events occur at the same location. 

 You must be able to correctly identify the 

observer who measures the “proper time” 

interval. 
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Problem: Deep-Space Probe 

A deep-space probe moves away from Earth with a 

speed of 0.80c. An antenna on the probe requires 3.0 s, 

probe time, to rotate through 1.0 revolution. How much 

time is required for 1.0 revolution according to an 

observer on Earth?  

http://en.wikipedia.org/wiki/File:Iieartb.jpg
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A deep-space probe moves away from Earth with a 

speed of 0.80c. An antenna on the probe requires 3.0 s, 

probe time, to rotate through 1.0 revolution. How much 

time is required for 1.0 revolution according to an 

observer on Earth?  
 

Given: 
 

v = 0.8 c 

Δtp = 3.0 m/s 

 

  

Find: 
 

t = ? 

Recall that the time on Earth will be 

longer then the proper time on the probe. 

Thus, numerically, 

s5.0
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Alternate Views 

 The view of O’ that O is really the one moving 

with speed v to the left and O clock is running 

more slowly is just as valid as O view that O’ 
was moving. 

 

 The principle of relativity requires that the 

views of the two observers in uniform relative 

motion must be equally valid and capable of 

being checked experimentally. 
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Time Dilation – Generalization  

 All physical processes slow down relative to a 

clock when those processes occur in a frame 

moving with respect to the clock. 

– These processes can be chemical and 

biological as well as physical 

 

 Time dilation is a very real phenomena that has 

been verified by various experiments. 



Lorentz Transformation (1) 

 Galilean Transformation equations are: 

 This transformation failed in many ways: 

 - Time is not absolute.                      (Time Dilation) 

 - Length is not absolute.       (Length Contraction) 

 - Contradicts   the   fact   that   c is constant in all 

      inertial frames. 

 - And many others. 
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Conclusion: Need a new set of transformation 

equations between (x’,u’,z’,t’) in S’ frame and 

(x,y,z,t) in S.  

Spherical wavefront in S:  

 

 

 

Spherical wavefront in S’:  

Lorentz Transformation (2) 
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Einstein made an intelligent guess. He suggested 

that: 

 

xtcxct'

z'zzz' 

y'yyy' 

)t'vx'xtvxx' 









'

(γγ

In what follows, we have a clear statement of the 

problem. 

Lorentz Transformation (3) 



Statement of the Problem: 

 t’ = t = 0 when S’ and S have a common origin. 

 A spherical light wave starts at t’ = t = 0. 

 According to Einstein’s second Postulate, the 
speed of light c is constant in S and S’. 

 The wavefronts observed in both systems must 

be spherical. 
 Motion of S’ is along x-axis  x = c t  ,   x’ = c t’. 

 x = k ( x’- v t’)  ,  x’ = k’ ( x – v t) , where k and k’ 
are unknowns. 

 k’ = k according to Einstein’s first Postulate  k 
is the only unknown. 

 y’ = y   and   z’ = z  since  motion  is  along  the 
x-direction. 

Lorentz Transformation (4) 



Lorentz Transformation (5) 

Let 
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By Einstein’s first postulate (All laws of Physics 

must be the same in all inertial frames), we must 

have k’ = k. i.e. k is the only unknown. 

By Einstein’s second postulate (The speed of light 

is constant in all inertial frames), we must have x 

= c t , x’ = c t’. 
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Lorentz Transformation (6) 
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Substitute for x = c t and x’ = c t’, we have: 



Lorentz Transformation (7) 
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Lorentz Transformation (8) 

To calculate the “times” equations, we substitute 

from (1) into (2). We have: 

     t'vtvxt'vtvxx γγγγ
2 

t't
v

x

v

x
 γ

γ

γ

γ

2

  t

c

v
1

v

x
t1

v

x
t' γ

-1

1

γ
γγ

γ
2

2

2 















































t
vc

v

v

x
t

vc

c
1

v

x
 

22

2

22
γ

γ
γ

γ

2













































Lorentz Transformation (9) 
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where 

We can also find the expression for t to be: 
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Lorentz Transformation (10) 

Summary of Lorentz Equations: 
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Some Remarks 

1) If v << c, i.e., β ≈ 0 and  γ ≈ 1, we see these 

equations reduce to the familiar Galilean 

transformation. 

2) Space and time are now not separated. 

3) For non-imaginary transformations, the 

frame velocity cannot exceed c. 

Some consequences of the above equations follow. 



Some Consequences of Lorentz Transformation 

  Time Dilation is predicted from Lorentz 

Transformation equations. 

  Synchronization of clocks in different inertial 

frames is necessary.  

 Length Contraction is also predicted from 

Lorentz Transformation equations. 

 Lorentz Transformation of Velocities in 

different inertial frames is derivable from 

Lorentz Transformation equations. 

 Lorentz Transformation equations are in 
agreement with Einstein’s Second Postulate. 



1. Time Dilation (Again) 

Consider the time interval between two events as  
reported in the two inertial frames S and S’. The time 
interval T in the S frame (at rest) and T’ in the S’ frame 
(moving with constant velocity v) are: 
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2. Synchronization of Clocks 

 

 Step 1: Place observers with clocks 
throughout a given system.  

 

 Step 2: In that system bring all the clocks 
together at one location. 

 

 Step 3: Compare the clock readings.   

 

 If all of the clocks agree, then the clocks are 
said to be synchronized.  

 



t = 0 

d    

t = d/c 

d    

t = d/c 

A method to synchronize Clocks 

 One way  is to have one clock at the origin set to 

t = 0 and advance each clock by a time (d/c) 

where d is the distance of the clock from the 

origin.  

 - Allow  each   of   these   clocks  to  begin timing 

      when a light signal arrives from the origin. 



31 

Synchronization of clocks 
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The Twin Paradox – Statement of the Problem 

 A thought experiment involving two twins 

named Speedo and Goslo. 
 

 Speedo travels to Planet X, 20 light years from 

earth. 

– His ship travels at 0.95c. 

– After reaching planet X, he immediately 

returns to earth at the same speed. 
 

 When Speedo returns, he has aged 13 years, 

but Goslo has aged 42 years. 
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The Twins’ Perspectives 

 Goslo’s perspective is that he was at rest while 

Speedo went on the journey. 

 Speedo thinks he was at rest and Goslo and the 

earth raced away from him on a 6.5 year 

journey and then headed back toward him for 

another 6.5 years. 

 The paradox – which twin is the traveler and 

which is really older? 
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The Twin Paradox – The Resolution 

 Relativity applies to reference frames moving at 
uniform speeds. 

 The trip in this thought experiment is not 
symmetrical since Speedo must experience a 
series of accelerations during the journey. 

 Therefore, Goslo can apply the time dilation 
formula with a proper time of 42 years. 

 

 

- This gives a time for Speedo of 13.1 years 
and this agrees with the earlier result. 

 There is no true paradox since Speedo is not in 
an inertial frame. 
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Time Dilation Verification – Muon Decays 

 Muons are unstable particles 
that have the same charge as 
an electron, but a mass 207 
times more than an electron. 

 Muons   have   a   half-life  of 
Δtp = 2.2 µs when measured in a 
reference frame at rest with 
respect to them (Figure a). 

 Relative to an observer on 
earth, muons should have a 
lifetime of  Δtp (Fugure b). 

 A CERN experiment measured 
lifetimes in agreement with the 
predictions of relativity. 

 
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3. Length Contraction 

 The measured distance between two points 
depends on the frame of reference of the 
observer 

 

 The proper length, Lp, of an object is the length 
of the object measured by someone at rest 
relative to the object 

 

 The length of an object measured in a reference 
frame that is moving with respect to the object 
is always less than the proper length 

- This effect is known as length contraction 
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Length Contraction – Equation 

   

 

 

 Length contraction 

takes place only 

along the direction 

of motion.  
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Length Contraction – Derivation(1) 

Here we derive Length Contraction from 

Lorentz Transformation equations: 

12
xxL 

The  length L  as measured in the stationary frame 

S is given by:  

The proper length Lp of a rod as measured in the 

moving frame S’ is given by:  

12p
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Length Contraction – Derivation(2) 
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In S’, measurements of the two position 

coordinates that specify the length Lp are given 

by Lorentz equation:   
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In S, t2 = t1 since x2 and x1 are measured 

simultaneously. 



Length Contraction – Derivation(3) 

Expanding the brackets we get: 
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L/Lp v/c L/Lp v/c 

0.2800 0.9600 0.9950 0.1000 

0.1411 0.9900 0.9165 0.4000 

0.1262 0.9920 0.8000 0.6000 

0.1094 0.9940 0.6000 0.8000 

0.0999 0.9950 0.4359 0.9000 

0.0894 0.9960 0.4146 0.9100 

0.0774 0.9970 0.3919 0.9200 

0.0632 0.9980 0.3676 0.9300 

0.0447 0.9990 0.3412 0.9400 

0.0141 0.9999 0.3122 0.9500 
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4. Equivalence of L.T. and G.T. in the 

Non-relativistic Limit  

When v<<c, we have from L.T. first equation: 

 tvxx  γ

where  
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γ When v<<c, γ→1 
 

We get agreement with 

G.T. equation.  

However, because of Time Dilation and Length 

Contraction,  Time is NOT absolute. Here we have 

an Illustration.  



4. Equivalence of L.T. and G.T. in the 

Non-relativistic Limit  

Consider the motion of the origin of O’. t’=t=0 at 

the start of the motion.  

After time t in O, O’ has moved a distance x=vt.  

Substitute for x in the time equation in L.T. 
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5. Lorentz Velocity Transformation L.V.T. 

From L.T. equations, we have: 

 tvxx  γ 









2c

vx
-tγ't

Let  xx
u

dt

dx
,u

td

xd






 

 tvdxxd d γ 







 dx

c

v
dt'

2
-dtγ

 































dt

dx

c

v
1

v
dt

dx

dx
c

v
dt

dtvdx

td

xd

22
x2

x

x

u
c

v
1

vu
u




or  



x2

x

x

u
c

v
1

vu
u






5. Lorentz Velocity Transformation L.V.T. 

Similarly, if the object under study has velocity 

components along the y and z axes, the 

components as measured by an observer in S’ 

are: 
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5. Lorentz Velocity Transformation 

Summary of Equations 
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6. Constancy of the speed of light (1) 

If ux = c then u’x = c 

From eq. (1), put ux= c 
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6. Constancy of the speed of light (2) 

The speed of an object can never exceed the 

velocity of light c. 

Let u’x= k c , where k is a positive constant. Also 

let S’ travels at speed v = k c relative to S. 

Now we find ux: 
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c Let us evaluate 

the maximum 

value of k. 



6. Constancy of the speed of light (3) 

Let  
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1k0  22 2k-k1

Substitute the above result in A, you get: 

1A(maximum)  c(maximum)u
x





6. Constancy of the velocity of light (4) 

The speed of light c is the same in all directions in 

all inertial frames. 

In slide 123, we showed that the speed of light 

propagating along x’-axis and the frame S’ moves 

with velocity v along the same axis. 

Consider next the case of observers moving 

along O’y’ at right angle to the direction of 

propagation of light which is O’x’. 
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6. Constancy of the speed of light (5) 

Substitute in the Ux equation in L.T.  
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6. Constancy of the speed of light (6) 

If we substitute u’x = c and v = c in the ux equation 

in L.T.  

c

c
c

c
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cc
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The relative velocity of two objects or two 

frames or an object in a frame can not 

exceed c. 

Conclusion: 


