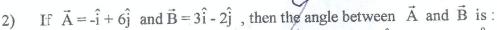
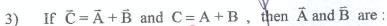

The Hashemite University **Department of Physics**


Second Semester

General Physics (101) First Exam

Time: 1 hour



- (a) $-5\hat{i} + 3\sqrt{3}\hat{j}$
- b) $14\hat{i} 3\sqrt{3}\hat{j}$
- c) $3\sqrt{3} \hat{i} + \sqrt{5} \hat{j}$
- d) $3\hat{i} + 3\sqrt{3}\hat{j}$
- e) -8î

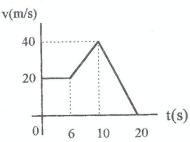
- a) 46.8° b) 88.2°
- (c) 133/2°
- d) 41.7°

 $\bar{\mathbf{B}}$

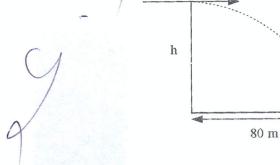
- a) perpendicular (b) Parallel (c) antiparallel
- cl) have an angle of 30° between them
- e) none of these

A particle moves a long the x-axis such that
$$v(t) = t^2 - 4$$
. When the particle is momentarily at rest, the instantaneous acceleration (m/s^2) of this particle is:

- a) 3
- b) 5

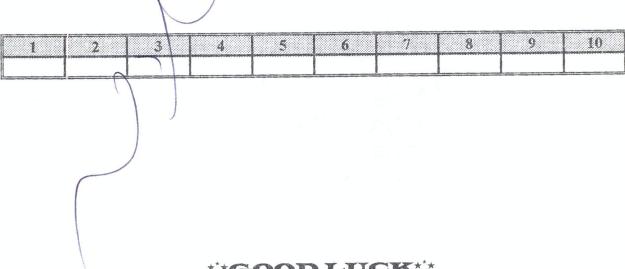

- a) 174
- b)/ 100
- c) 220
- d) 437

A ball is thrown vertically upwards with an intial velocity of 20 m/s. The magnitude of 6) the acceleration (m/s2) of the ball is:


- b) 5
- c) 1
- d) depends on time
- e) more information needed to answer the question .

The graph shows the velocity of a motorcycle police officer plotted as a function of time. The instantaneous acceleration (m/s^2) at t = 8 s is:

- a) Zero
- b) 5
- 7
- d) 10
- e) 15



- A particle moves in the x-y plane with a constant a cceleration $\vec{a} = -4\hat{j}$ m/s². At t = 08) its position is $10\hat{i}$ m and its velocity is $-2\hat{i} + 8\hat{j}$ m/s. Find the distance from the origin to the particle at t = 2 s.
 - a) 2
- b) 7
- c) 9 d) 15
- 10
- A stone is thrown horizontaly with a speed of 20 m/s from the top of a cliff of height h as 9) shown. It strikes the ground 80 m from the base of the cliff. Find the speed (m/s) of the ball just before it hits the ground.
 - a) 20.1
 - b) 50.9
 - (c) 44.7
 - d) 40.3
 - e) 85.6

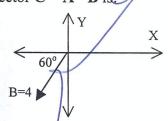
 $V_0 = 20 \text{ m/s}$

- 10) The speed of a particle moving in a circle 2 m in radius increases at the constant rate of 4.4 m/s². At an instant when the magnitude of the total accleration is 6 m/s², what is the speed (m/s) of the particle?
 - a) 3.9
- b) 3.5
- d) 3.0
- e) 4.2

The Hashemite University Faculty of Science and Arts Department of Physics

First semester

Time: 1 hour


Physics 101 First Exam

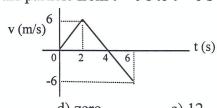
الرقم الجامعي:	لغة العربية):	إسم الطالب (با
الشعبة:	دة:	إسم مدرس الم

Please note that:

- 1. Acceleration due to gravity, $g = 10 \text{ m/s}^2$.
- 2. Encircle the answer that is nearest to your correct answer.

Q1) If $\vec{A} = 3i + j$ and \vec{B} is as shown below, then the vector $\vec{C} = \vec{A} - \vec{B}$ is:

- a) -i+2.5j
- b) -5i+4j
- c) 5*î*-4*î*
- d) 5**i**+4.5**j**


Q2) A ball is thrown vertically upward with an initial speed of 5 m/s. The acceleration (in m/s²) of the ball at its highest point is:

- a) 5 (b) 10 downward
- c) 10 upward
- d) None of above
- e) zero

Q3) If $A = B^n C^m$ where A has the dimensions of LT, B has the dimensions of $L^2 T^{-1}$, and C has the dimensions of LT^2 , then the exponents n and m have respectively (U) the values of:

- a) 2 & 3
- b) 4/5 & -1/5
- c) 1/5 & 3/5
- d) 1/2 & 1/2
- e) 2/3 & 1/3

Q4) The figure shows the velocity (in m/s) of a particle as a function of time in one dimension. The total displacement (in m) of the particle from t = 0 s to t = 6 s is:

a) 18

b) 6

c) 2

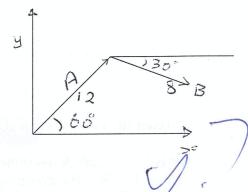
d) zero

e) 12

Q5) The po	osition of an object	moving in one div x(t) = 12 t	nension is given b _ + ³	y:	
Where x is	s in meters and t is i		- t		
	object is momentari		s acceleration (in r	n/s ²):	
			`		
a) 6	b) -9	c) -12	d) ?	e) zero	/.
Q6) A sto m/s. The ti	ne is thrown verticatime (in s) at which	ally upwards from the stone is movin	the ground with a g at speed of 20 m	n initial speed only downwards i	f 100 s:
(a) 12	b) 5	c) 15	d) 20	e) 10	
toward ead at 35 km/h	cars are 20 km apar ch other on a straigh or and the other at 4	nt line road. One c	ar is moving	v ₁	V ₂
will they r	meet?			*	¥
a) 2	b) 0.25	9) 1.5	d) 0.75	e) 1	
Q8) If vec	etor $\vec{A} = 3i + 4j$ and	$ \vec{B} = c\hat{k} \cdot \vec{A} \times \vec{B} $	= 10, then the value	ue of c is:	
			_		
a) 18	b) 6 <i>j</i>	c) zero	d) 2	e) 3	
O9) If a	person runs once a	round a circular to	دورة و احدة فقط) ack:	of radius 64 m	in 40
	person's average s		3 33	,	
(a) 10	b) 402	c) 3.2	d) 5	e) zero	ž
Q10) The	angle between \vec{A} =	$=\hat{i}+3\hat{j}-5\hat{k}$ and the p	ositive y-axis is:		••••
(a) 59.5°	b) 70.9°	c) 120.1°	d) 161.4°	e) zero	

THE HASHEMITE UNIVERSITY FACULTY OF SCIENCE AND ARTS PHYSICS DEPARTMENT

Summer Session General physics 1(0102101)


Time: 2 hrs.

First Exam.

الرقم الجامعي :	الإسم:
I: Encircled the correct answer (2points each question)	
1.If $A = B^m/C^n$, where A has dimensions L/T^2 , B has dimensions L/T and dimensions L. Then the exponents n and m have the values ::	d C has
(a) 1,2	
(b) 1/2 ,1)
©2,1	, /
(d) 1,1/2	
2. ICV. 4. A = 1: 12: 12b and mater B = 2: 14: The 2-le between	a tha turo
2.: If Vector $A = 1 i + 3j + 2k$ and vector $B = 3i + 4j$. The argle between vectors A and B is:	i the two
(2) 37	
(b) 30 (b) 30 (c) (b) 30 (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	
(c) 43	
(d)56	
3. An object is thrown vertically upward while it is rising : (a) its velocity is upward and its acceleration is downward (b) its velocity and acceleration are both downward (c) its velocity and acceleration are both decreasing (d) its velocity and acceleration are both upward	
4. A car moving with an initial velocity of 50 m/s has a constant acceleration of 50 m/s has a constant acceleration.	ition of
10 m/s ² after 6 seconds its velocity will be:	
(a) 138 m (b) 110 m	Doy = 18
(c)160 m	
(d) 706 m	17 167 G
)	
5 The diagram shows a velocity time graph for a car moving in a straigh	t line. At
point p the car must be: (a) moving with constant velocity	0=1
(b) stationary	
© accelerated at constant acceleration	1 = 0
(a) moving at about 30 with respect to x-axis	
?	£
	- (

6. If vector A has a magnitude of 12 meters and vector B has a magnitude of 8 meters as shown. The magnitude of A + B is:

- (a) 5.6 m
- (b)8.6 m
- (c) 12.6 m
- (d)14.5 m

7. Starting at time t=0, an object moves along a straight line. Its coordinates in meters is given by $X(t)=75\ t-t^3+5\ t^2$. Where t is in seconds. Calculate its velocity and acceleration at t = 2 s

acceleration at
$$t=28$$

$$\mathcal{L}(t) = 75t - t^3 + 5t^2 - 5t^2 + 10t$$

$$\mathcal{L}(t) = \frac{12}{1t} = 75 - 3t^2 + 10t$$

$$\mathcal{L}(t) = 75 - 3(2)^2 + 10(2) = 83 \text{ m/s}$$

$$U(2) = 75 - 3(2)^2 + 10(2) = 83 \text{ m/s}$$

$$a(t) = \frac{dC}{dt} = 0 - 6t + 10$$
 $a(t) = -8(t) + 10 = -2 \text{ m/s}^2$

release a heavy bomb to hit a target at X:

$$V_{ox} = 180 \text{ km/h} + \frac{180 \times 10^3}{3600} \frac{\text{m}}{\text{s}} = 50 \text{ m/s}$$

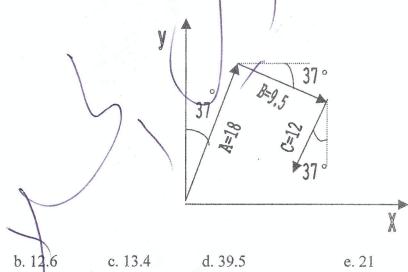
Starting with y-matical

 $V_{og} = 0$, $V_{o} = 0.5 \text{ km} = 500 \text{ m}$
 $V_{og} = 0$, $V_{o} = 0.5 \text{ km} = 500 \text{ m}$
 $V_{og} = 0$, $V_{o} = 0.5 \text{ km} = 500 \text{ m}$

$$y = y + v_{0}yt + \frac{1}{2}a_{y}t^{2}$$
 $0 = 500 + 0 + \frac{1}{2}(-9.8)t^{2}$
 $\Rightarrow t = \sqrt{\frac{500 \times 2}{9.8}} = (0.1 \text{ S})$

$$x = 0$$
, $t = 50 \times 10.1 = 505 \text{ m} = 0.5 \text{ km}$.

9. A particle starts from the origin at $\mathbf{t} = \mathbf{0}$ with a velocity $\mathbf{V} = \mathbf{12} \, \mathbf{i} + \mathbf{18} \, \mathbf{j}$ m/s and moves in the X - Y plan with a constant acceleration $\mathbf{a} = -3\mathbf{i} - 4\mathbf{j}$ m/s². Determine the displacement of the particle at $\mathbf{t} = 3 \, \mathbf{s}$.

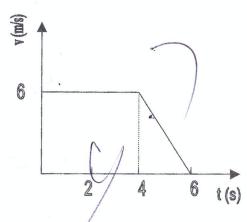

10. A projectile has an initial velocity $\vec{V} = 30i + 20j$ from a horizontal surface . determine the maximum height of the projectile .

Physics Department	General Physics # # # 101	First Exam.
Second Semester		
2000/2001		Time: One hour
Student's Name:	· · · · · · · · · · · · · · · · · · ·	
Instructor's Name:		

Put a circle around the correct answer for each of the following problems:

Notes: Take
$$g = 10 \text{ ms}^{-2}$$

 $\sin 37^{\circ} = 0.6 \text{ and } \cos 37^{\circ} = 0.8$


- Q1. The displacement of an object is given by $s = ka^m t^n$, where k is a dimensionless constant, a is the acceleration and t is the time. The values of m and n, respectively, are:
 - a. 1 and 3
- b. 2 and 1
- c.zero and 1
- d. 3 and 2
- e. 1 and 2
- Q2. In the vector diagram shown, the magnitude of the resultant vector is:

a. 11.2

- Q3. A car travels on a straight road for 40 km at 30 km/h. It continues in the same direction for another 40 km at 60 km/h. The average velocity (in km/h) of the car is:
 - a. 10
- b. 30
- c. 50
- d. 72
- e. 40

Q4. The velocity versus time graph for an object moving along a straight line is shown in the figure. The total distance (in meters) covered by the moving object in the time interval between t=2s to t=6s is:

a. 12

b. 18

c. 30

d. 15

e. 6

Q5. The relationship between the position of a body moving along the x-axis and time is given by $x = 2t^3 + 2t$, where x in meters and t in seconds. The average velocity (in m/s) of the body between the times t = 2 s and t = 4 s is:

a. 54

b. 30

c. 58

d. 120

e. 136

Q6. A balloon is travelling vertically upward at a constant speed of 10m/s. When it is at 30m above the ground, an object is released from the balloon. The time (in seconds) needed for the object to reach the ground is:

a. 3.0

b. 3.6

c. 9.0

d. 4.6

e. 4.0

Q7. A projectile was fired at θ_0 above the horizontal. At the highest point of its trajectory its speed was 200 m/s. If air resistance is ignored, the magnitude of the initial velocity (in m/s) is:

a. 0

b. $200 \cos(\theta_0)$

c. $200/\cos(\theta_0)$

d. 200/ $\sin (\theta_0)$

e. 200 $\sin (\theta_0)$

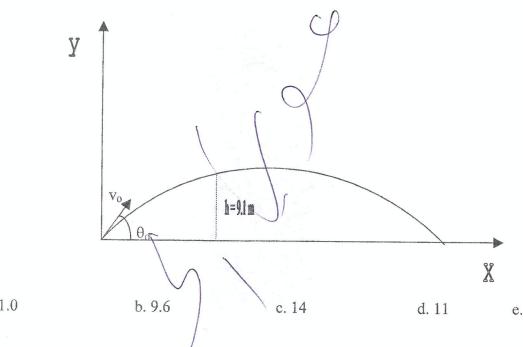
Q8. The acceleration of an object moving in the x-y plane is $\vec{a} = 3\hat{i} - 2\hat{j}$ m/s² and its Initial velocity is $\vec{v}_o = 2\hat{i} + 4\hat{j}$ m/s. Its velocity \vec{v} at t=2s is:

a. $8\hat{i}$

b. $-4\hat{i} + 8\hat{j}$ c. $\hat{i} + 6\hat{j}$ d. $5\hat{i} + 2\hat{j}$ e. $8\hat{i} + 8\hat{j}$

Q9. The position vector of a particle as a function of time is $\vec{r} = 2t\hat{i} + (5 - t^2)\hat{j}$ where r is in meters and t in seconds. The time (t>0) (in seconds) when the velocity vector \vec{v} is perpendicular to \vec{r} is:

a. 2


b. 1.73

c. 0.41

d. 1.93

e. 2.83

Q10. A ball is thrown from the ground as shown in the figure. Its velocity at a height h=9.1m is. $7.6\hat{i} + 6.1\hat{j}$ m/s. Its maximum height (in meters) is:

a. 1.0

e. 20

The Hashemite University

Key

Department of Physics

Physics 0102101

e) 94°

d) 75°

First Examinati	on	$eq:control_ent$	Time : One hour		
	de Lancia de la Calenda Periodo de La Propueto de Parte de Primo de April 1965 de Calenda de Parte de Calenda de Parte de Calenda April 1965 de Calenda Ap	رقم الشعبة:	الرقم الجامعي:	الاسم:	
Each question is wo	rth 2 points. Assu	ıme that the acceler	ation due to gravit	y g=10 m/s ² .	
For the following 8	questions, choose	the correct answer	(one answer only).		
1. There is no SI	basic unit for "ar	ea" because:			
b) it is not pos c) area has n d) area can b	e expressed in to	s area in m². s the unit for area is erms of m². vith			
2. Suppose A =	B ^{1/5} C ^{3/5} where B	has dimensions	and C has din	nensions LT ² . Then A	
has dimension	s:		/		
a) $\frac{L}{T}$	6 LT	c) L ² T	(d) L2T2	e) $\frac{L^2}{T}$	
3. The velocity v	in m/s of a chere the time t is	ar not moving un s in seconds. The u	der constant acc nits of a and b are	eleration is given by v respectively:	
		£		/s ⁴ e) m/s ² ; m/s ³	
4. An object move measured in moving (v=0)	seconds. What	axis has a position is the acceleration	given by $x = (24$ n (in m/s ²) of the	$t-2 t^3$) m, where t is object when it is not	
a) zero	b) -12	© –24	d) +12	e) +24	
point B At po	int B. the car st	pint A with a veloci tarts to accelerate. The total distance	te with an acce	seconds till it reaches leration $a = 5 \text{ m/s}^2$ fo points A and C is:	
		В		C	
A	1		4) 350	(e) 420	
a) 150	0)2/0	c) 320	d) 350	420	
a building 20	m above the g	from the edge of round. The time iking the ground,	20 m	$\mathbf{v}_{o} = 0$	
a 2		c) 10	d) 4	e) 8	
7. If C+B=-9	i – 8 j, and Č –	$\vec{B} = 5 \hat{i} + 4 \hat{j}$, the c) 66°	direction of B is:		
a) 41°	b 221°	c) 66°	d) 236°	e) 206°	
1				its) are subtracted, the	
	for $\vec{C} = \vec{A} - \vec{B}$ has			angle between the two	

© 105°

b) 114°

a) 123°

SHOW YOUR WORK IN DETAILS. Each question is worth 2 points

9. If $\vec{A} = 12 \hat{i} - 16 \hat{j}$ and $\vec{B} = -24 \hat{i} + 10 \hat{j}$, what is the magnitude and direction of $\vec{C} = 2\vec{A} - \vec{B}$?

$$C = \sqrt{(48)^2 + (-42)^2} = \sqrt{4068} = 63.78$$

$$tand = \frac{-42}{48} = -0.875$$

$$\theta = -41.2^{\circ} \text{ or } \theta = 318.8^{\circ}$$

10. Two stones are thrown at the same time with the same initial speed of 25 m/s. The first stone is thrown upward from the ground while the other is thrown downward from the top of tower of a height of 100 m. At what distance above ground will the two stones meet?

$$y = y_0 + C_0 t - \frac{1}{2}gt^2$$
 $h = 100 - 25t - 5t^2$

$$\frac{1}{6} = 0$$
 $\frac{1}{4} = 10$ $\frac{1}{6} = 0$ $\frac{1}{6} = 0$

$$100 - 25t - 8t^2 = 25t - 8t^2$$

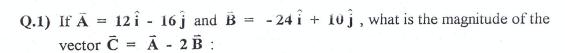
$$=3 l_2 = 25 \times 2 - 5(2)^2 = 30 m.$$

height

The Hashemite University Department of Physics

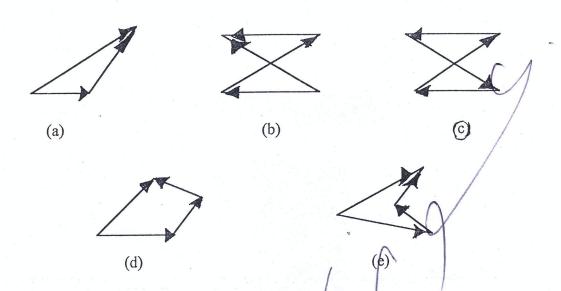
General Physics I (2102101) First Semester

First Exam

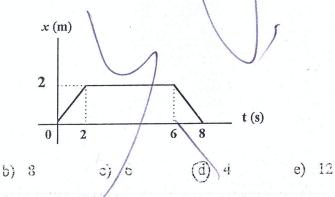

	Student's Name:
	Student's Number:
***************************************	Instructor's Name:
	NOTE: THE ACCELERATION DUE TO GRAVITY g = 10 m/s ²
	Circle the correct answer for each of the following questions.
	Q1) The acceleration of an object as a function of its speed is given by $a = k_1 - k_2 v^2$.
	The dimensions of k_1 and k_2 , respectively, are:
	a) dimensionless; $\frac{1}{L}$ b) $\frac{1}{L}$; $\frac{L}{T^2}$ c) $\frac{L}{T^2}$; L d) $\frac{L}{T^2}$; $\frac{1}{L}$ e) $\frac{T^2}{L^2}$; $\frac{L}{T^2}$
	Q2) An object undergoes three successive displacements as shown below. The magnitude of its resultant displacement (in m) is: (note: the figure is not to scale).
	a) 58.8 b) 38.6 c) 61.8 d) 42.8 e) 80.6
	60m 80° 73
	80° 12m x
	Q3) If $\vec{A} = (15, 80^{\circ})$ and $\vec{B} = 12\hat{i} - 16\hat{j}$, what is the magnitude of $\vec{A} - \vec{B}$?
	a) 14.6 b) 35.4 c) 32.2 d) 5.8 e) 23.7

Q4) The velocity of a particle moving along the x-axis as a function of time is shown. If x = 2m at t = 1 sec., what is the position of the particle at t = 2 sec.

a) -3 d) 1 0) -4.5


c) 3

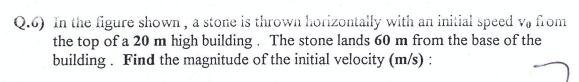
x = 50m in 2 acceleration (ct moving with 2.0 sec. The (in m/s ²) of this	velocity at th	eration along the end of this	the x-axis goes from $x = 10m$ to time interval is $10m/s$. The	1
a) 10	b) -2.2	c) 2.2	d) -10	e) -5	
Q6) A stone (in sec) is:	is thrown vertice	cally upward v	vith an initial s	peed of 20m/s. Its time of flight	
a) 2	b) 4	c) 6	d) 8	e) 10	
Q7) An objec	et starts from the	e origin at $t = 0$	0 with a velocit	y of $2\hat{j}$ m/s and moves in the	
xy-plane with object at the i	a constant acconstant its x-coo	rdinate is 18m	0	nat is the y-coordinate of the	
a) 6	b) 35	c) 44	d) 9	e) 15	
Q8) A ball is speed of 30n $t = 2 \sec is$:	n/s. The magni	itude of the in	nstantaneous v	lding 45m high with an initial elocity (in m/s) of the ball at	
a) 45	b) 36	c) 10	d) 32	e) 20	
Q9) The horiz	zontal range (in			_	
a) 60	b) 170	c) 90	d) 120	e) 80	
magnitude and	avels at a const d direction of the d and points to	ne total accelera	ation of the car	rcular track of radius 40m. The are:	
b) 10 m/s	s ² and points av	vay from the ce	enter of the circ	ular track.	
c) 20 m/s	and points to	ward the center	r of the circular	track.	
	and points av			up track.	
known				ponent of the deceleration is	
			in signification		
		GOO	DD LUCK		

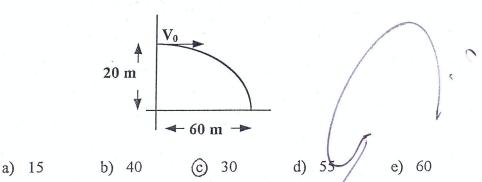


- a) 42
- b) 22
- c) 64
- d) 90
- (e) 70

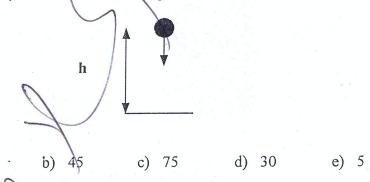
Q.2) Which of the following vector diagrams represents zero resultant?

Q.3) In the following diagram, the total distance covered (m) in the time interval 0 - 8 s is:

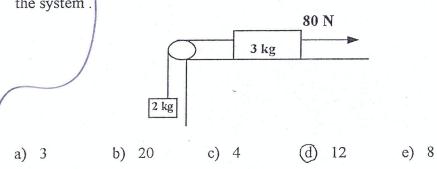



Q.4) A ball is released from rest. The magnitude of the average velocity (m/s) between the 2nd and 4th seconds of its fall is:

a) 30


a) 2

- b) 10
- c) 40
- d) 20
- e) 70
- Q.5) A body moves along a straight line. Its position at any instant is given by the equation $x = 3t^2 \frac{8}{3}t^3$, where x in meters and t in seconds. The time or times (s) at which the body is at rest is:
 - (a) 0 and 0.75
- b) 0
- c) 4
- d) 0.75
- e) 2



- Q.7) A ball A is dropped from rest, at the same time another ball B is thrown horizontally. If both balls leave from the same height above the ground, then
 - a) ball B hits the ground before ball A does
 - (b) both balls hit the ground at the same time.
 - c) ball A hits the ground before ball B does.
 - d) the time can not be considered to compare the two motions.
 - e) not enough information is given to compare when they hit.
- Q.8) A stone is thrown downward from an unknown height above the ground with an initial speed of 10 m/s. It strikes the ground 1 s later. Determine the initial height (m) of the ston above the ground.

Q.9) In the figure shown all surfaces are frictionless. Find the acceleration (m/s²) of the system.

Q.10) As a train rounds a sharp horizontal turn of radius 150 m, it slows down from 90 km/h to 50 km/h at constant deceleration rate in 4 s. The total acceleration (m/s²) as the train reaches 50 km/h is

a) 1.5

15

- b) 0.75
- c) 1.3
- d) 0.5
- (e) 3

the particle ($in m.s^{-2}$) is:

(b) 1/2;

(a) 19.7;

The Cartesian coordinates of the point $(-3, 3\sqrt{3})$ in polar coordinates is: (b) $(3,120^{\circ});$ (c) $(3\sqrt{3},60^{\circ});$ (a) $(3,60^\circ)$; (d) (6,60°);**Q.2:** If $\vec{A} = \hat{i} - 2\hat{j}$ and $\vec{B} = -3\hat{i} + \hat{j} + 2\hat{k}$, then $\vec{A} \cdot \vec{B}$ is: (b) 5; (c) 3; (d) 7;(e) 2. In the figure shown beside, the value of $\vec{A} \cdot \vec{B}$ is: (b) 20; (c) $-20\sqrt{3}$; (a) -20;120° (d) $20\sqrt{3}$; (e) zero. The angle between the vector: $\vec{r} = 2\hat{i} - \hat{j} - 3\hat{k}$ and the positive y-axis is: Q.4: (a) 105.5°; (b) 74.5°: (c) 30.7°; (d) 58.3°; (e) 131.5°. x(m)Q.5 & Q.6: Refer to the graph shown beside Q.5: The total distance (in m) traveled between t = 0 s and t = 6 s is: 5 (a) Zero; (b) 25; (d) 10; (e) 5. The velocity during the time interval between Q.6: t = 0 s and t = 2 s is: (a) Constant; (c) Decreasing; (b) Increasing; (e) Cannot be determined. (d) Zero; $v(ms^{-1})$ The graph shown beside represents the Q.7: velocity of a particle as a function of time. The acceleration (in m.s²) of the particle at t = 5 s is: (a) 1.8, (b) 2.6; (c) 3.0; (e) - 1.7. (d) -1.5 $v_o = 20 \text{ ms}^{-1}$ A stone is thrown vertically upward as shown in the figure beside. The time (in s) needed for the stone to reach the ground is: (c) 5.2; 30 m (a) 1.2; (b) 3.1; (d) \checkmark .3; (e) 2.1. Q.9: In the figure shown beside, a ball is fired horizontally with a speed of 2 m.s^{-1} . The height, h, (in m) below the point of release is: (a) 5;(b) 30; (c) 10; (e) 15. (a) 45; Q.10: In the figure shown, the particle completes one revolution in 2s at a constant speed. The centripetal acceleration of

(c) 1/4; (d) 4.9;

(e) 9.9.

Q.11:							x-direction			
	where x	is in me	eters a	nd t in se	conds.	The	acceleration	1 (in m.s ⁻²)	when	the car
	momenta	وظیا) rily	-) stop	s is:						

(a) -10;

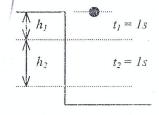
(b) -30;

(c) -60;

(d) -75;

(e) Zero.

Q.12: A ball when released (deliance h_1 meters during the first second of time. The distance of fall (in m) during the next second of time, i.e. h_2 , is:


(a) 5;

(b) 10;

(c) 15;

(d) 20;

(e) 25.

Q.13: The initial position and velocity of a particle are, respectively given by: $\vec{r}_o = 2\hat{i} + \hat{j}$, in m, and $\vec{v}_o = \hat{i} - 2\hat{j}$, in m_o . If the acceleration of the particle is $\vec{a} = -\hat{i} + \hat{j}$, in ms^{-2} , then the magnitude of the position vector (in m) at t = 2s is:

(a) 5.0;

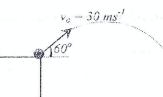
(b) 2.7;

(c) 2.0;

(d) 1.5;

(e) 2.2.

Q.14: In the figure shown beside, the speed (in $m.s^{-1}$) of the projectile after t = 5 s is:


(a) 15.0;

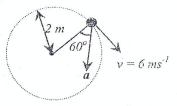
(b) 28.3;

(d) 11.2;

(d) 19.3;

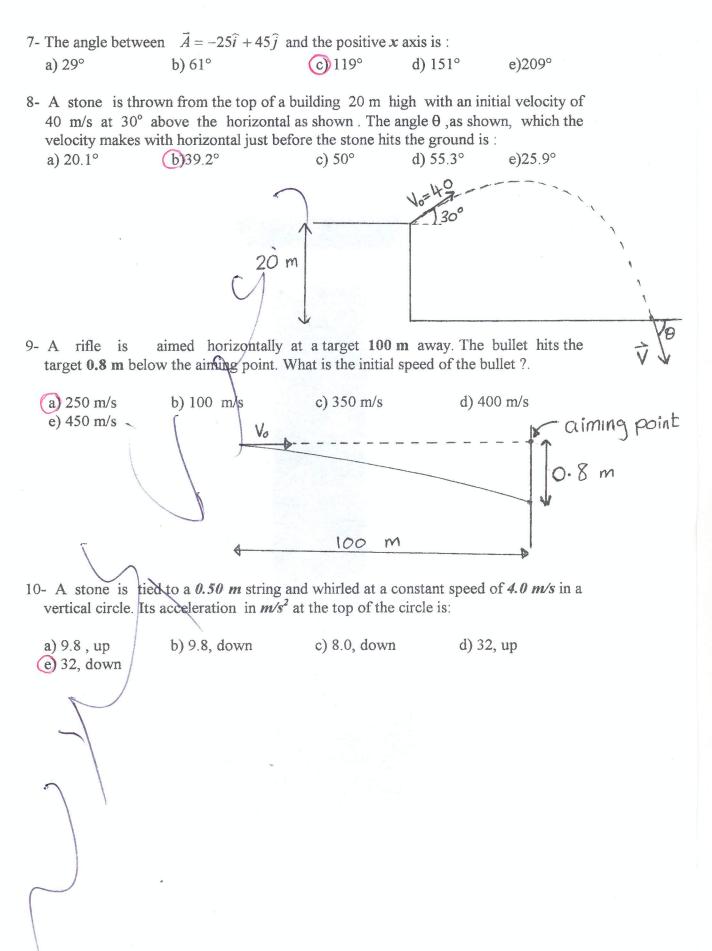
(e) 24.0.

Q.15: A particle performs circular motion in a vertical plane. AT a certain instant the speed of the particle is 6 m.s^{-1} and the direction of its total acceleration is as shown in the figure beside. The magnitude of the tangential acceleration (in m.s⁻²) is:


(a) 14.7;

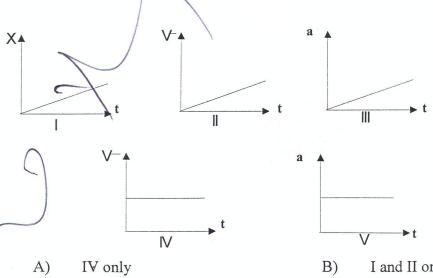
(b) 18.0;

(c) 19.9;


(d) 23.1;

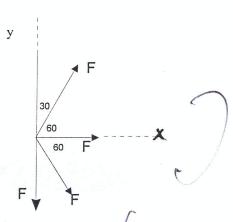
(e) 31.2

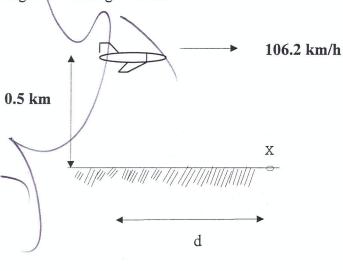
Alailla aireall plant of the


1-	The coordinate of in meters and t is $t = 2 s$ is:					
	a) 5 m/s	b -5 m/s	c) 11m/s	d) -11 m/s	e) -14 m/s	
2-	Starting at time t by $v(t) = 98 - 2t$ is:					
	a) 0 e) 49 m/s ²	b) - 4.0 m/s ²	c) -9.8 m/s	s ² d) -28	8 m/s^2	
3-	A stone is releas Neglecting air res				eed of 10 m/s.	
	a) 2160 m/s e) 186 m/s	b) 1760 m/s	© 210 m/s	d) 19	6 m/s	
4.	- An electric vehicle line until it reached 1.0 m/s ² until it s	hes a speed of 20	m/s. The vehicle	then slows at a co		
	(a) 300 m e) none of the	b) 200 i	m (c)	100 m	d) 500 m	
5-	Which of the fiv at a constant velo		as is correct for an	bject moving in	a straight line	- t
		al	E	a	E	
	If $ \vec{A} + \vec{B} = A$ a) \vec{A} and \vec{B} are p b) \vec{A} and \vec{B} are p c) the angle between	parallel and in the parallel and in oppose \vec{A} and \vec{B} is	same direction posite directions 45°	A>B, then:		
	e) \vec{A} is perpendic	rular to \vec{B}				

- 1. The coordinate of a particle in meters is given by $x(t) = 12 t - 1.5t^2$, where the time t is in seconds. The particle is momentarily at rest at t =
 - A) 2.0 s
- B) 3.0 s
- 4.0
- D) 5.0 s
- Over a short interval, starting at time t=0, the coordinate of an automobile in 2. meters is given by $x(t) = 27t + 12t^2$, where t is in seconds. The magnitudes of the initial (at t = 0) velocity and acceleration of the auto respectively are:
 - $0; 12 \text{ m/s}^2$ A)
 - $0: 24 \text{ m/s}^2$ B)
 - 27 m/s; 0 C)

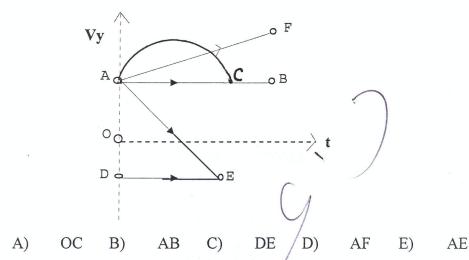
- 27 m/s; 12 m/s²
- 27 m/s; 24m/s²
- An object is thrown straight op from ground level with a speed of 75 m/s. If 3. g= 10 m/s² its distance above ground level 6.0 s later is:
 - 0.00 m A)
 - 270 m B)
 - C) 330 m

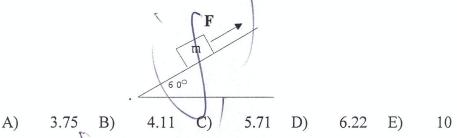

- 480 m D)
- E) None of these
- Consider the following five graphs (note the axes carefully). Which of 4. these represent (\$) motion at constant speed?


- C) IV and V only
- E) I, II, and III only

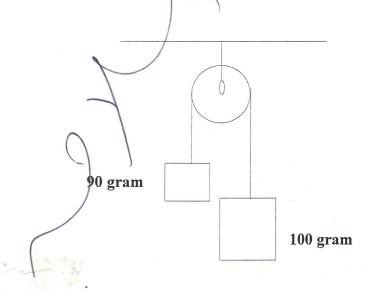
- I and II only
- D) I and IV only

- 5. Four forces all have the same magnitude, F, oriented as shown. The resultant force is:
- A) 3 F i + F j
- B) 2 F i+F j
- C) 5 Fi
- D) Fi+Fj
- E) 2 F i-F j


- 6. Let S = i + 2j + 2k and T = 3i + 4k. The angle between these two vectors is given by:
 - A) $\cos^{-1}(14/15)$
 - B) cos⁻¹ (11/15)
 - C) cos⁻¹ (11/225)
 - D) cos⁻¹ (104/225)
 - E) Cannot be found since S and T do not lie in the same plane.
- 7. The airplane shown is in level flight at an altitude of 0.50 km and a speed of 106.2 km/h. At what distance d should it release a heavy bomb to hit the target X? Take $g = 10 \text{ m/s}^2$.

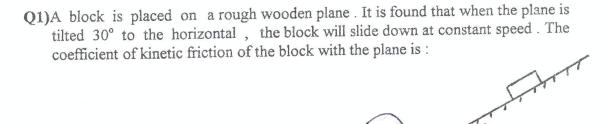

- A) 150 m
- B) 295 m
- C) 417 m

- D) 2550 m
- E) 15000 m


Which of the curves on the graph below best represents $\boldsymbol{v}_{\boldsymbol{y}}$ vs. t for a 8. projectile fired at an angle of 45° above the horizontal?

9. A force (F=40N) is applied on a box of mass M as shown. The acceleration of the box was 2m/s² up the smooth incline. The mass (in kg) of the box is:

Two blocks are connected by a string and pulley as shown. Assuming that 10. the string an pully are massless, the magnitude of the acceleration of each block is:

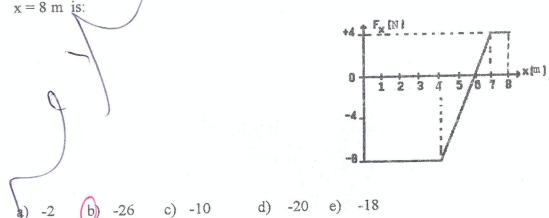

 0.049 m/s^2 A)

 0.53 m/s^2 D)

B) 0.020 m/s^2

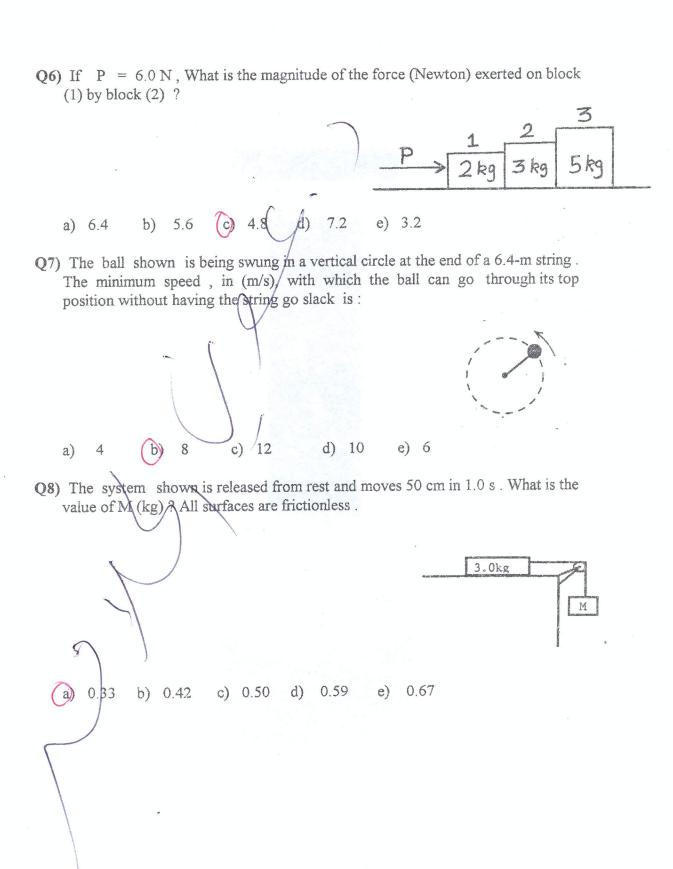
E) 1.00 m/s^2

- C) 0.0098 m/s^2

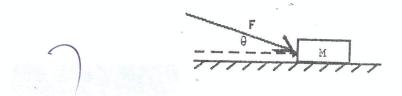

c) 1.730 (d) 9.577 e) 1.45

Q2) The force an ideal spring exerts on an object is given by $F_x = -kx$, where x measures the displacement of the object from its equilibrium (x = 0) position. If k = 60 N/m, then the work done (1) by this force as the object moves from x = -0.20 m to x = 0 is:

Q3) At time t = 0 a 2-kg particle has a velocity in m/s of $4\hat{i} - 3\hat{j}$. At t = 3s its velocity in m/s is $2\hat{i} + 3\hat{j}$. During this time the work done (J) on it was:

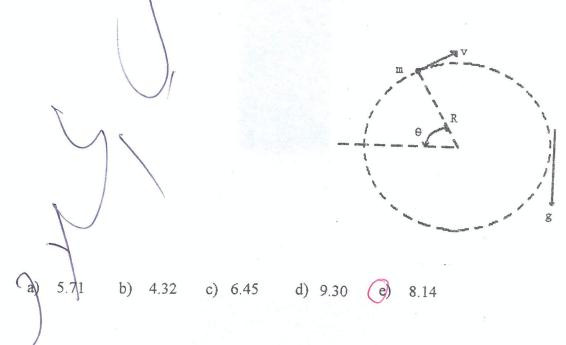


Q4) A body moving along the x-axis acted upon by a force F_x that varies with x as shown. The work done (J) by this force as the object moves from x = 1 m to x = 8 m is:



Q5) An 8.0-kg object rests on the floor of an elevator which is accelerating downward at a rate of 1.5 m.s⁻². The magnitude of the force (Newten) the floor of the elevator exerts on the object is:

a) 90 b) 10 c) 59 d) 68 e) 105



Q9) A block is pushed across a horizontal surface by the force shown . If the coefficient of kinetic friction between the block and the surface is 0.30, F=20~N, $\theta=30^{\circ}$, and M=3.0~kg, then the magnitude of the acceleration (m/s²) of the block is :

a) 2.8 b) 2.3 (c) 1.8 d) 3.3 e) 3.7

Q10) A 0.30-kg mass attached to the end of a string swings in a vertical circle (R = 1.4 m), as shown. At an instant when $\theta = 30^{\circ}$, the speed of the mass is 6.0 m/s. The magnitude of the resultant force (N) on the mass at this instant is:

參 GOOD LUCK 參

Course Title : Course No. :

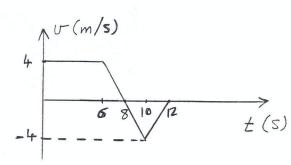
Instructor:

Mid-Term Examination

Time

: One Hour

Student Name : ----- Student No. : -----


Answer All the Following Three Problems:

(20 Points)

I. Multiple Choice:

(8 points)

- 1. A stone is dropped from the top of a building. It reaches the ground with a speed of 37 m/s. The height of the building in meters is approximately:
 - a) 2 b) 70 c) 6,800 d) 9.8 e) 100
- 2. A car accelerates from rest at a constant rate of 10 m/s². After 7 seconds, its speed in meters per second is:
 - a) 70 b) 2 c) 4,900 d) zero e) 10
- 3. A ball is thrown vertically upwards with an initial speed of v_i . It reaches the maximum height of 20 meters, then returns to the initial position. The displacement in meters is:
 - a) v_i^2/g b) $v_i^2/(2g)$ c) 20 d) 40 e) zero
- 4. The velocity of an object moving along the x-axis is shown in the figure as a function of time. The distance travelled between $t_i=0$ and $t_f=12$ seconds is given in meters as:
 - a) 28 b) 20 c) 36 d) 8 e) zero

- 5. A car goes around a circle of radius 20 meters with a constant speed of 30 km/h. The car's acceleration in m/s is approximately
 - a) 45 b) 1.5 c) 3.5 d) .4 e) zero

II. Problem Two:

(7 points)

a) In the equation,

 $y^{\alpha} = ka^2t^{\beta}$, y is position, a is acceleration and t is time; k, α , β are dimensionless constants.

- (1) Find the values of α , β that satisfy the dimensions of the equation. (3 points)
- (ii) In the SI (MKS) system, what are the units of a^2 ? (1 point)

b) Vectors \overrightarrow{A} and \overrightarrow{B} are given by:

$$\overrightarrow{A}$$
 = $3\hat{i}$ - $2\hat{j}$ \overrightarrow{B} = $-5\hat{i}$ + \hat{j}

(i) Sketch $\overrightarrow{A} \overrightarrow{B}$.

(1 point)

(ii) Find the magnitude and direction of $\overrightarrow{A}-\overrightarrow{B}$. (2 points)