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Brillouin Zones and their importance: 
 
The different Brillouin zones correspond to primitive cells of a 

different type that come up in the theory of electronic levels in a 

periodic potential. The first Brillouin zone is considered as the 

Wigner-Seitz (WS) primitive cell in the reciprocal lattice. In other 

words, the first Brillouin zone is a geometrical construction to the 

WS primitive cell in the k-space. 

 

In a direct lattice, the procedure of drawing a WS cell is as follows: 

i) Draw lines to connect a given lattice points to all nearby 

lattice points. 

ii) Draw new lines or plane at the mid point and normal to the 

lines in (i). 

iii) The smallest volume enclosed in this way is the WS 

primitive cell. [See figure 29]. 
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Construction of a Wigner-Seitz cell in the reciprocal lattice (called 

first Brillouin zone): 

To construct the first Brillouin zone, we need to find the link 

between the incident beam (like electron or neutron or phonon 

beam) of wave vector k


 and the reciprocal lattice vectorG


 . This 

relation may be found as 2)
2

()
2

(
GG

k 




, [for example, an x-ray beam 

in the crystal will be diffracted if its wave vector k


has the 

magnitude and direction required by this latter relation]. [See the 

proof in the next chapter]. Thus the procedure to build up the first 

Brillouin zone is as follows (see figure 30): 

i) Select a vector G


 from the origin to a reciprocal lattice 

point. 

Figure 29: Construction of primitive Wigner-Sietz 
cell in 2-D direct space lattice. 
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ii) Construct a plane normal to the vector G


at its mid point. 

This plane forms a part of the zone boundary. 

iii) The diffracted beam will be in the direction Gk


 . 

iv) Thus the Brillouin construction exhibits all the wave 

vectors k


 which can be Bragg-reflected by the crystal. 

Important note: 

A wave whose wave vector drawn from the origin terminates on 

any of the planes will satisfy the condition of diffraction.  Such 

planes are the perpendicular bisectors of the reciprocal vectors. 

Remarks: 

- The planes divide the Fourier space of the crystal into 

fragments as shown for a square lattice. 

- The central square is a primitive cell of the reciprocal lattice. 

It is a Wigner-Seitz cell of the reciprocal lattice (called the 

first Brillouin zone).(See figure 29). 

- The first Brillouin zone is the smallest volume entirely 

enclosed by the planes. 

 

Conclusion: Wigner-Seitz cell: smallest possible primitive cell, which 

consist of one lattice point and all the surrounding space closer to it 

than to any other point. The construction of the W-S cell in the 

reciprocal lattice delivers the first Brillouin zone (important for 

diffraction). 
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The importance of Brillouin zone: 

The Brillouin zones are used to describe and analyze the electron 

energy in the band energy structure of crystals. 

 

 

Figure 30: Construction of the first Brillouin zone for 
oblique lattice in 2-D reciprocal space lattice. 
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Lattice planes and their importance: 

 

The plane of points in the direct lattice may be represented by their 

intersection with the crystal axses 1a


, 2a


 and 3a


 as 11ax


, 22ax


 

and 33ax


. The relations x1=n/h, x2=n/k and x3=n/   give intercepts of 

planes that do not pass through lattice points. The integers h, k and 

 are used to index a plane. Here n is any integer (which 

represents the common divisor used for a proper choice of the h, k 

and  indices)*. When primitive vectors in reciprocal lattice are 

used to index a plane, no common divisor other than 1 is needed 

for the indices. However, a common factor other than one is 

needed to get h, k and  indices and then finding the intercepts of 

all planes, when non-primitive lattice vectors are chosen instead. 

*[Note: Here, the set of integers k1, k2 and k3 is replaced from now 

on by a well-known set of integers the h, k and  ]. 

 

Definitions 

A lattice plane in a Bravais lattice: 

It is the plane that may contain at least three noncollinear Bravais 

lattice points. Actually such a plane may contain infinitely many 

lattice points which form a two-dimensional Bravais lattice. [See 

figure 31]. 

A family of lattice planes: 

This represents the collection of parallel, equally spaced lattice 

planes which together contain the entire 3-D Bravais lattice. There 

are many different possible families of lattice planes. 
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If we consider the set of real space planes on which the plane 

wave 
rKie



 has a value of one (where 332211 axaxaxr


 ). These 

planes (one of which contains the point 0r


) are perpendicular to 

a set of vectors K


 in reciprocal lattice. These set of vectors satisfy 

the relation 1RKie


(i.e. the plane wave is constant in planes 

perpendicular to K


and has the same value in planes separated by 

d) for all Bravais lattice vectors 332211 anananR


 . The latter 

vectors must lie within a family of lattice planes. For nth plane in a 

family of planes that do not contain lattice points, the separation 

between plane is rather nd (where n is defined before as 

321 nknhnn  ). [It must be noted here that K


is redefined as 

321 bbkbhK




 ]. Thus the reciprocal lattice vector normal to the 

nth plane and then its family of planes, is GnK


 . This means that 

when the family of planes contain lattice points then the shortest 

reciprocal lattice vector KG


 will be used instead (i.e. n must be 

equal unity in this case). 

 

Figure 31: A family of lattice planes in a simple cubic lattice 
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Example: Consider a plane h k  in a crystal lattice which intersects 

the crystal axis as 11ax


, 22ax


 and 33ax


. 

a) Prove that the reciprocal lattice vector 321 bbkbhG




 is 

perpendicular to this plane. 

b) Prove that the distance between the two adjacent parallel 

planes of the lattice is
G

hkd 
2

)(  . 

c) Show for a simple cubic lattice that 
222 


kh

a
d . 

 

Solution: 

In figure 32 the plane h k  intersecting the axis 1a


, 2a


 and 3a


 by 

11ax


, 22ax


 and 33ax


, respectively. The small plane hk contains the 

two vectors 2211 axax


 and 3311 axax


 . The reciprocal lattice vector 

321 bbkbhG




 is in the direction of the unit vector n̂  which is 

normal to the hk plane. 

a) Taking the dot products ( 2211 axax


 ) G


and ( 3311 axax


 )G


, 

where each product gives zero. This result indicates that 

these vectors are perpendicular to the two vectors and also 

perpendicular to the hk plane. 

b) The projection of the vector 11ax


on the normal unit vector n̂  

is simply the distance d( hk ) which separating the 

hk plane and another plane passing through the origin. 

11
ˆ)( axnhkd


  , 



R. I. Badran  Solid State Physics 

 53 

 but 
G

G
n 



ˆ .  

11

321)( ax
G

bbkbh
hkd









 


 ,  

where 
cellV

aa
b 32

1 2

 
  , 

cellV

aa
b 13

2 2

 
   and

cellV

aa
b 21

3 2

 
  , and n 

is chosen to be one.  

This gives 
G

hkd 
2

)(  . 

c) For a simple cubic lattice )ˆˆˆ)(
2

( zykxh
a

G 





, where    

x
a

b ˆ)
2

(1





, y

a
b ˆ)

2
(2





 and z

a
b ˆ)

2
(3





. 

222
)(







kh

a
hkd . 

 

Figure 32: The interplanar distance of two parallel planes  
         intersecting the crystal axis. 

1a


 

2a


 

3a


 

11ax


 

22ax


 

33ax


 

)( hk
 

G

G
n 



ˆ  



R. I. Badran  Solid State Physics 

 54 

 
Indexing of lattice planes (Miller indices): 

Miller indices are usually used to specify the crystal orientation of 

solids. It is shown above that a vector normal to a lattice plane may 

describe the orientation of this plane. This normal vector is 

obviously a reciprocal lattice vector. Therefore the unique choice of 

such a vector is the shortest reciprocal lattice vector 

321 bbkbhG




 . 

 

 

Conclusions: 

1. Miller indices of a lattice plane are the coordinates of the 

shortest reciprocal lattice vector normal to that plane, with 

respect to a specified set of primitive reciprocal lattice 

vectors. (i.e. A plane with Miller indices h, k,   is normal to 

the reciprocal lattice vector 321 bbkbhG




 ). 

2. Miller indices are set of integers that depend on the choice 

of primitive vectors. 

3. If the shortest reciprocal lattice vector is chosen as the 

normal to a lattice plane, then the integers h, k,    may have 

no common factor. 

An alternative way of defining Miller indices: 

It can be shown that the projection of the reciprocal lattice 

vector 321 bbkbhG




 on any of the direct lattice vectors  11ax


, 

22ax


 and 33ax


, as shown in figure 32, give us the following 

equations: CaxG  )( 11


; CaxG  )( 22


; CaxG  )( 33


, where C is 

any suitably chosen constant. 
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[Note: It can be easily concluded that the constant C may be 

defined as nC 2 ]. 

Conclusion: 

The intercepts with the crystal axes of a lattice plane are 

inversely proportional to the Miller indices of the plane. However 

when lattices planes are considered such that no common 

factors for the Miller indices does exist, the Miller indices have 

the following proportionality relation: 
221

1
:

1
:

1
::

xxx
kh   . 

 

 


