RI Badran Partial Differential Equations: An application Mathematical Physics

Analytic function

In a complex plane where f (z) is a function of complex variable z,
f'(z) is defined in the same way as derivative of a real function f'(x)

in a real plane, namely:
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Definition:
A function f (z) is analytic (or holomorphic or regular or monogenic)
in a region of the complex plane if it has a (unique) derivative at
every point of the region.
[Note: when we say f (z) is analytic at a point z = a, it means that

f (z) has a derivative at every point inside some small circle

about z = a.
Theorem I:

Iff(z) =u(x,y) +iv (X Yy)is analytic in a region, then in

that region
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(These equations are called Cauchy — Riemann conditions).

Note: The student can prove these equations by using the
followings:
(1) f has derivative wr.t z  f has partial derivatives w.r.t. X
andy.
(2) Since a complex function has a derivative w.r.t a real
variable if and only of its real and imaginary parts do have

derivatives.
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(3) Since we assumed Z—f exists and is unique (this is what
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analytic function all about!!),
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Example: (Cauchy-Reimann conditions in polar coordinates)

In polar coordinates, prove that:
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Solution:

In Polar coordinates:

f(z) =u(r, 8)+iv(r, 0), (1)
where z = r e". (2)

Applying the chain rule to get:
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Take the partial derivative of eq. (2) w.r.t the variable r to get
0 _ i
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Substitute eq. (4) into eq (3) to get
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Take the partial derivative of eq. (1) w.r.t the variable r to get
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From egs. (5) and (6) we have
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Again the chain rule gives us
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Take the partial derivative of eq. (2) w.r.t the variable 0 to get
0z . g
% =Ire- (9)
Substitute eq. (9) into eq. (8) to get
of _of . i
% = E ire- (10)
Take the partial derivative of eq. (1) w.r.t the variable 0 to get
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From egs. (10) and (11) we have
ie‘9=.£(a—u+iﬂ). (12)
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From egs (7) and (12) we have
8_u+|@—£(a_u+|ﬂ)
or or iro6 00 (13)

By equating real and imaginary parts in both sides of eq (13)

we get
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(These are called Cauchy-Reimann conditions in polar

ou _ ov ov_ au

coordinates).

Example: Show that the f (z) = e is differentiable for all finite
values of z.
Solution:

e?=e*Y=¢e*(cosy+isiny)

u=e*cosy v=e”siny
To show that f'(z) = e%
ou ov
&:e"cosy : E:excosy
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Also 8_y =-e*siny &:exsiny
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s f'(z)=e*(cosy+isiny)

Thus f ,(Z) — ex+iy — ez
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- f(2) = e” is differentiable for all finite values of z.
Exercise: Show that f(z) = e” is also differentiable for all values of
Z.
Examples: Given the functions:
i)lzl=Ix+iyl.
i) f (z) = Z°.
) z*=x-1y
a) Find the real and imaginary parts of the given functions.
b) Is each of the given functions analytic? (Use the Cauch-
Riemann conditions to check this).

Solutions:
l.a) u=4x*+y? and v=0
ou ov ov ou
i.b) 7 T Ay ~ 7 A
“Sox oy ' oX oy
. 1z | is not analytic.

(The students must solve the other two examples).



