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Phonons and Thermal Properties: (Specific heat capacity) 

We want to discuss the phonon heat capacity at a constant 

volume Vv
T

U
C )(




 , where U is the energy at temperature T. 

The contribution of the phonons to the total heat capacity of 

a crystal is called the lattice heat capacity. The determination 

of CV can be obtained using three different models, namely 

1. Dulong-Petit model 

2. Einstein Model 

3. Debye model 

The experimental data of the relation of CV versus absolute 

temperature illustrates a specific behavior shown in the 

Figure 67. The best competing model is the one which 

reproduce well the values of in the whole range of 

temperatures. 
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Figure 67: The plot of specific heat capacity, Cv, versus 

temperature. Experimental data (symbols) is taken from 

copper sample. The dashed line represents the prediction of 

Cv from classical theory (Dulong-Petit model).  
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It is necessary to explain the meaning of density of normal 

modes (or states) in a continuous medium and tackles its 

approach as this latter approach will be used in some of the 

above mentioned models. 

 

The Approach of Density of Normal Modes (or States) in a 

Continuous Medium: 

Density of States in One-Dimension: 

For a linear array of N atoms located along x-axis, the 

vibration of the atoms manifests itself in an elastic wave 

traveling along x-axis.   When the linear chain of atoms has 

a length L=Na, where a is the separation distance between 

successive atoms, we found that the periodic boundary 

condition requires that u (0) = u (L). This means that 1ikNae  

which implies that 
L

n
k

2
  or 

Na

n
k

2
 . Here, in such Born- 

von Karman periodic boundary condition, the atom at the 

right end of the linear chain is constrained in such a way 

that it is in the same state of vibration as the atom at the left 

end. Each atom, shown in Figure 63, exhibits a mode of 

vibration for each k-value. When a large number of atoms 

are considered in the linear chain of length L, the discrete 

linear atomic chain becomes sort of a quasi-continuous 

linear medium. In such case, in k-space an arbitrary interval 

of length dk can be chosen in order to find the number of 

modes where k lies in the length dk, shown in Figure 68. 
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Here in this k-space the separation distance between two 

successive atoms is 
L

2
. One can simply say that the 

number of modes in this quasi-continuous medium of length 

L is equal
)2(

L

dq


. Using the dispersion curve , shown in 

Figure 62, one can deduce that the number of modes in 

length dk lying between dk and k + dk must correspond to 

the number of modes in the frequency length d lying 

between   and d, namely: 




2
)(

Ldq
dDo  . 

Here, )(oD  represents density of states. Since density of 

states include modes lying in both positive and negative 

regions of k, in Figure 68, a factor of two must multiply the 

previous relation because the right mode is due to waves 

traveling to right and left mode is attributed to waves 

traveling to the left. Thus one can get: 

dq

d

L
Do 



 )( . 

It can be shown that the velocity of wave v is equal to the group 

velocity 
dq

d
vg


 . Thus the density of states for the continuous 

linear chain medium is written as:  

 

v

L
Do


 )(  
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Figure 68: Dispersion relation of  versus k. The number of 

modes in length dk is lying between dk and k + dk and 

corresponds to the number of modes in the length d of 

frequency lying between   and d. 

 

Density of States in Three Dimensions: 

The problem of one dimensional continuous linear chain studied 

earlier for N primitive cells can be extended to three dimensions 

N  N  N (or N 
3) primitive cells. For the three dimensional 

picture in k-space, the periodic boundary condition 

requires 1
)(


 zyx kkki
e . This, however, implies that 

L

n
k x

2
 ,

L

m
k y

2
 and 

L

s
k z

2
 , where n=m=s=0, 2, 4, …..etc. 

This three dimensional picture in k-space can be represented by 

a sphere of radius k with volume 
3

4 3k
 that contains a number of 

k 

 

 + d 

k + dk k 

d 

 
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cubes where each cube represents a mode of volume 3)
2

(
L


. 

One can get the number of modes per volume as: 

3

3

)
2

(

3

4

L

k





 . 

The derivative of latter expression with respect to k can be 

defined as the number of modes (or states) per volume in the 

spherical shell between radii dk and k + dk, as shown in Figure 

69, or called density of states D (k) dk, namely: 

3

2

)
2

(

4
)(

L

dkk
dkkD




  

If one makes the change of variables from k to  using the 

dispersion relation, shown in Figure 68, and the fact that at low 

values of k the frequency = k v, the density of states )(D can be 

obtained from the number of modes  dD )( whose frequencies exist 

in the range d between  and  + d. The latter number of modes 

can be found from the spherical shell whose radii are  and  + d, 

seen in Figure 70. Thus the density of states  dD )( can be 

expressed by: 

3

2

3

3

)(

4

)2(
)(

v

dL
dD




  . 

Or, simply,   
3

2

22
)(

v
D






   

, where, the volume of sample is = L
3
. 
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The last relation of )(D versus  is plotted in Figure 71. 

 

Figure 70: The Spherical shell of radii d and  + 

d in k-space. 
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Figure 69: The Spherical shell of radii dk and k + dk 
in k-space. 
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Important Remark: 

The above obtained expression of )(D implies the existence 

of a single mode for each value of k. This expression must 

be multiplied by a factor of 3, because there are actually 

three different modes (one longitudinal and two transverse) 

are associated with the same value of k. Here, an 

assumption is made that the velocity in each mode is 

considered the same (i.e. vlongitudinal= vtransverse= v). The final 

expression of )(D  becomes: 

3

2

22

3
)(

v
D






   

 

 

 

 

 

Figure 71: The plot of )(D versus  in continuous 

medium. 
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Specific Heat Capacity and Dulong-Petit Model: 

This model is based on the classical theory where it 

describes the solid as a set of atoms bound to their sites by 

ideal harmonic forces.  When thermal energy is transferred 

to the solid all atoms start to vibrate around their sites as 

harmonic oscillators. The average energy of a one-

dimensional harmonic oscillator is given by: 

TkU Bave . .  

Here, kB is Boltzmann constant and T is the absolute 

temperature. Furthermore, the average energy of a three-

dimensional harmonic oscillator per mole is defined as: 

TkNU BA3 . 

The product of Avogadro's number NA=6.0231023 mole-1 

and Boltzmann constant kB= 1.3810-23 J/K gives R which 

has the value of 8.31J/mole.K. The heat capacity at constant 

volume, Vv
T

U
C )(




 , may have the expression: 

     RCV 3    

Conclusion: 

The obtained result agrees with the experimental data, 

shown in Figure 67; at high values of temperature but it 

severely disagree at low values of temperature. The 

experiment shows, however, that CV decreases and then 

vanishes completely as T  0K. 
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Specific Heat Capacity and Einstein Model 

The failure of the classical theory to reproduce a correct 

expression for CV in the whole range of temperatures 

motivated other scientist to use a better treatment. In his 

treatment Einstein assumes that the atoms are 

independent isolated oscillators where the energy of each 

oscillator was found from quantum mechanics as: 

)
2

1
(  nU  

The term 
2

1
can be neglected because it is irrelevant to the 

derivation of specific heat capacity. The expression of isolated 

energy suggests that energy is quantized. The frequency of 

each oscillator  is considered the same for each oscillator. 

However, the adopted expression of energy cannot correctly 

express the actual behavior of oscillating atoms in solid 

because oscillating atoms are not isolated but actually 

exchanging energy with their surroundings. Here the ambient 

thermal bath provides energy to oscillating atoms. Thus, it is 

better finding the average energy at thermal equilibrium, 

namely: 



















0

0

.

n

Tk

U

n

Tk

U

n

ave

B

n

B

n

e

eU

U . 

Here, the Boltzmann factor Tk

U

B

n

e


gives the probability for an 

energy state Un to be occupied. The sum in the denominator is 

introduced for the purpose of making correct normalization. 

Combining the last two equations to get: 
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






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U
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





. 

The above equation can be reduced to the expression: 

1

.





Tk

ave

Be

U






 

Each atom is represented by three oscillators and for 

Avogadro's number of atoms NA we should have a total of 3NA 

oscillators. Thus the last expression of energy must be 

multiplied by 3NA to get the total energy as: 

1

3





Tk

E
A

B

E

e

NU






 

It must be noted here that Einstein frequencyE replaces  to 

indicate the existence of common frequency for all oscillators. 

The heat capacity may finally have the expression: 

2

2

)1(

)(3





Tk

Tk

B

E
BAV

B

E

B

E

e

e

Tk
kNC











. 

Put BAkNR  and introduce the Einstein temperature E such 

that BEE k , the above expression becomes 

2

2

)1(

)(3










Tk

Tk

E
V

B

E

B

E

e

e

T
RC . 

Using the last derived formula of Einstein, plot CV versus T and 

compare the results with experimental data in Figure 72, we 

notice that the general features of the curve are reproduced. In 

particular, the results from Einstein model agree with the 

experimental values of CV over the whole range of 

temperatures, especially for CV o when T oK. It is 
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interesting to note that the fitting of experimental data for 

copper, for example, using Einstein model gives E =240K. 

Here, E is used as the only adjustable parameter in such fitting 

process, over a wide range of temperature. Moreover, 

knowing E enable us to determine E =2.5  1013 Hz, where 


BE

E

k
 . 

Low and high temperature limits in Einstein Model: 

In high temperature limit where T >> E , we can expand T

E

e



in a 

power series of 
T

E
. Retaining the largest terms in the 

series T

E

e



1- 
T

E
+…the approximated expression of CV 

becomes 

)1(3

)11(

1

)(3
2

2

T
R

T

T

T
RC E

E

E

E
V













  

Ignoring 
T

E
 in last expression, one can get RCV 3 . This final 

result agrees with the classical result of Dulong-Petit, as shown in 

Figure 72. 
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Figure 72: The plot compares the experimental data 

(symbols) of specific heat capacity, Cv, versus temperature 

taken from copper sample to both the corresponding Einstein 

results (solid line) and the prediction of Cv from classical 

theory (Dulong-Petit model) (dashed line).  

 

In the low-temperature limit, where T<< E , the exponential T

E

e



 in 

the Einstein expression of Cv is larger than unity. This makes the 

approximated expression to be as 

 

TE

Tk

Tk

E
V

E

B

E

B

E

e
T

R

e

e

T
RC












 2

2

2 )(3)(3  

The exponential term T

E

e




 in last expression is more sensitive to 

temperature than the term 2)(
T

E
. This implies that CV approaches 

zero exponentially, while the experiment shows that CV approaches 
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zero as T
3. Thus the decrease found by last expression is much 

faster than that found by experiment. 

Disadvantages of Einstein Model: 

1. One of the main pitfalls of Einstein model is the assumption 

of independence of harmonic oscillators of atoms. The 

motion of an atom in soild actually affects its neighbors and 

these neighbors, in turn, affect their neighbors and so on. In 

this case we cannot ignore the interaction between atoms as 

harmonic oscillators and another assumption that considers 

the motion of whole lattice rather than that of a single atom is 

actually more important. 

2. Einstein model assumed that at low temperature, each 

independent oscillator is essentially unexcited, and hence CV 

approaches zero and the oscillator in such case may be 

considered as "frozen" in its ground state. This "freezing" 

scenario is also the reason why the vibrational modes in 

diatomic molecules such as H2, do not contribute to specific 

heat, except at high temperatures. The inaccurate results 

obtained at low temperature become evident now. The 

reason is that the model ignores the existence of very low 

frequency modes which can absorb heat even at very low 

temperatures. This is because their energies of quantization 

are very small and this consequently may lead to smaller 

values of specific heat than experimental one as seen in 

Figure 72. 

 

 

 


