Fisher’s Least Significant Difference  ( Fisher’s LSD )

 

Why not using  t test to compare each two population means?  Overall error rate 1 – ( 1- a )c .

 

1)   Perform an analysis of variance to test Ho: m1 = m2 =…= mt

 

2)   If there is insufficient evidence to reject Ho – proceed no further

 

3)   If Ho is rejected, calculate LSD

 

LSD  = ta/2 S2w ( 1/ni + 1/nj )

 

 

If ni = nj = n

 

LSD  = ta/2 √ 2S2w/n

 

 Note: df used in t is for S2w

 

4)   If absolute value  |Yi – Yj| ³  LSD ,  the population means are different

 

e. g.

 

Treatment ( n= 5)

Sample mean

                1

505

2

528

3

564

4

498

5

600

6

470

The ANOVA table is then

 

Source

Df

SS

MS

F

Between

5

56360

11272

4.60

Within

24

 58824

2451

 

Total

29

 

 

 

 

 

From tables F 5,24 (0.05) = 2.62

 

LSD  = t a/2 √ 2S2w / n

 

 

1) Rank the sample means from lowest to highest

 

Pop

6

4

1

2

3

5

Mean

470

498

505

528

564

600

 

 

2) Compute sample differences

 

     Y5  -  Y6  ,  Y3  -  Y6  ,   Y2  -  Y6  ….

 

      6    4    1    2    3    5

 

     Y5  - Y4  ,  Y3  -  Y4 ,   Y2  -  Y4

 

     6    4    1    2    3    5

 

 

 

 

 

 

 

 

 

 

Tukey’s W procedure

 

 

1)    rank the t sample means

 

2)   two populations are different if

 

 

    | Yi  -  Yj | ³ W  

 

 

    W  =  q a (t,v) √ S2w / n

 

    Note:   v is df for mean square within samples

 

 

 Tukey’s W is more conservative compared to LSD

 

 

If different number of samples per treatment

 

 

 W ij  =  q a (t,v) √ S2w/2 ( 1/ni + 1/nj )

 

 

Student-Newman-Keuls Procedure ( SNK )

 

 

The SNK procedure make use of a critical value

 

  Wr  =  qa (r,v) √ S2w/n

 

For means that are r steps apart when the sample means are ranked from lowest to highest

 

Pop

6

4

1

2

3

5

Mean

470

498

505

528

564

600

 

 

e. g.  W6 = qa (6,v) √ S2w /n

 

r

2

3

4

5

6

qa(r,v)

2.92

3.53

3.90

4.17

4.37

Wr

64.65

78.16

86.35

92.33

96.75

 

1)   rank the t sample means from lowest to highest

 

2) for two means Yi and Yj that are  r  steps apart, mI and mj are different if  

 

    | Yi  - Yj  |  ³ Wr

 

    Wr as defined above, n is the number of observations per sample , v is the df for mean square for within samples

 

   Note: replace t by r when finding the q values from the table

 

SNK is less conservative than Tukey’s W procedure – will declare more significant differences than W